RAxML-HPC2 on XSEDE8.1.11Phylogenetic tree inference using maximum likelihood/rapid bootstrapping run on XSEDEAlexandros StamatakisStamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics. 2006 Nov 1;22(21):2688-90Phylogeny / Alignmenthttp://icwww.epfl.ch/~stamatak/index-Dateien/countManual7.0.0.phpraxmlhpc2_rest_tgbraxmlhpc_hybridlogic2perl"raxmlHPC-HYBRID "perl$specify_bootstraps && $bootstop < 50 && !$more_memory0raxmlhpc_hybridlogic2_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=5\\n" .
"threads_per_process=6\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
perl$specify_bootstraps && $bootstop < 50 && !$more_memory0raxmlhpc_hybridlogic2bperl"raxmlHPC-HYBRID "perl$specify_runs && !$more_memory0raxmlhpc_hybridlogic2b_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=5\\n" .
"threads_per_process=6\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
perl$specify_runs && !$more_memory0raxmlhpc_hybridlogic3perl"raxmlHPC-HYBRID "perl$specify_bootstraps && $bootstop >= 50 && !$more_memory0raxmlhpc_hybridlogic3_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=10\\n" .
"threads_per_process=6\\n" .
"node_exclusive=1\\n" .
"nodes=2\\n"
perl$specify_bootstraps && $bootstop >= 50 && !$more_memory0raxmlhpc_hybridlogic11perl"raxmlHPC-HYBRID "perl$use_bootstopping && !$more_memory0raxmlhpc_hybridlogic11_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=10\\n" .
"threads_per_process=6\\n" .
"node_exclusive=1\\n" .
"nodes=2\\n"
perl$use_bootstopping && !$more_memory0raxmlhpc_hybridlogic13perl"raxmlHPC-PTHREADS "perl!$mulparambootstrap_seed && !$bootstrap_seed && !$specify_runs && !$more_memory0raxmlhpc_hybridlogic13b_schedulerscheduler.confperl
"threads_per_process=8\\n" .
"nodes=1\\n"
perl!$mulparambootstrap_seed && !$bootstrap_seed && !$specify_runs && !$more_memory0raxmlhpc_hybridlogic22perl"raxmlHPC-HYBRID "perl$more_memory && $datatype eq "dna" &&(($ntax - 2)*($nchar)*8*16) > 12*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*16) < 15*(1024*1024*1024) 0raxmlhpc_hybridlogic22_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=8\\n" .
"threads_per_process=8\\n" .
"node_exclusive=1\\n" .
"nodes=2\\n"
perl$more_memory && $datatype eq "dna" &&(($ntax - 2)*($nchar)*8*16) > 12*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*16) < 15*(1024*1024*1024) 0raxmlhpc_hybridlogic23perl"raxmlHPC-HYBRID "perl$more_memory && $datatype eq "dna" &&(($ntax - 2)*($nchar)*8*16) > 15*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*16) < 20*(1024*1024*1024) 0raxmlhpc_hybridlogic23_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=6\\n" .
"threads_per_process=10\\n" .
"node_exclusive=1\\n" .
"nodes=2\\n"
perl$more_memory && $datatype eq "dna" &&(($ntax - 2)*($nchar)*8*16) > 15*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*16) < 20*(1024*1024*1024) 0raxmlhpc_hybridlogic24perl"raxmlHPC-HYBRID "perl$more_memory && $datatype eq "dna" &&(($ntax - 2)*($nchar)*8*16) > 20*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*16) < 30*(1024*1024*1024) 0raxmlhpc_hybridlogic24_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=4\\n" .
"threads_per_process=16\\n" .
"node_exclusive=1\\n" .
"nodes=2\\n"
perl$more_memory && $datatype eq "dna" &&(($ntax - 2)*($nchar)*8*16) > 20*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*16) < 30*(1024*1024*1024) 0raxmlhpc_hybridlogic27perl"raxmlHPC-HYBRID "perl$more_memory && $datatype eq "protein" && (($ntax - 2)*($nchar)*8*80) > 12*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*80) < 15*(1024*1024*1024) 0raxmlhpc_hybridlogic27_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=8\\n" .
"threads_per_process=8\\n" .
"node_exclusive=1\\n" .
"nodes=2\\n"
perl$more_memory && $datatype eq "protein" && (($ntax - 2)*($nchar)*8*80) > 12*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*80) < 15*(1024*1024*1024) 0raxmlhpc_hybridlogic28perl"raxmlHPC-HYBRID "perl$more_memory && $datatype eq "protein" && (($ntax - 2)*($nchar)*8*80) > 15*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*80) < 20*(1024*1024*1024) 0raxmlhpc_hybridlogic28_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=6\\n" .
"threads_per_process=10\\n" .
"node_exclusive=1\\n" .
"nodes=2\\n"
perl$more_memory && $datatype eq "protein" && (($ntax - 2)*($nchar)*8*80) > 15*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*80) < 20*(1024*1024*1024) 0raxmlhpc_hybridlogic29perl"raxmlHPC-HYBRID "perl$more_memory && $datatype eq "protein" && (($ntax - 2)*($nchar)*8*80) > 20*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*80) < 30*(1024*1024*1024) 0raxmlhpc_hybridlogic29_schedulerscheduler.confperl
"jobtype=mpi\\n" .
"mpi_processes=4\\n" .
"threads_per_process=16\\n" .
"node_exclusive=1\\n" .
"nodes=2\\n"
perl$more_memory && $datatype eq "protein" && (($ntax - 2)*($nchar)*8*80) > 20*(1024*1024*1024) && (($ntax - 2)*($nchar)*8*80) < 30*(1024*1024*1024) 0infileSequences File (relaxed phylip format) (-s)1infile.txtinfile_regularSequences File (relaxed phylip format) (-z)perl!$compute_mrperl"-s infile.txt"1infile_JoptionTree file (-z)perl$compute_mrperl" -z infile.txt"1runtime1scheduler.confMaximum Hours to Run (click here for help setting this correctly)0.25Maximum Hours to Run must be less than 320perl$runtime > 320.0Maximum Hours to Run must be greater than 0.1perl$runtime < 0.1perl"runhours=$value\\n"The job will run on 32 processors as configured. If it runs for the entire configured time, it will consume 32 x $runtime cpu hoursperl$specify_bootstraps && $bootstop< 50 && !$more_memoryThe job will run on 32 processors as configured. If it runs for the entire configured time, it will consume 32 x $runtime cpu hoursperl$specify_runs && !$more_memoryThe job will run on 64 processors as configured. If it runs for the entire configured time, it will consume 64 x $runtime cpu hoursperl$specify_bootstraps && $bootstop >= 50 && !$ancestral_states && !$fast_tree && !$bipartitions && !$startingtreeonly && !$log_likelihood && !$more_memory && !$morpho_weight_calibration && !$classify_into_reftree && !$compute_mrThe job will run on 64 processors as configured. If it runs for the entire configured time, it will consume 64 x $runtime cpu hoursperl$use_bootstopping && !$more_memoryThe job will run on 32 processors as configured. If it runs for the entire configured time, it will consume 32 x $runtime cpu hoursperl!$mulparambootstrap_seed && !$bootstrap_seed && !$specify_runs && !$more_memoryThe job will run on 64 processors as configured. If it runs for the entire configured time, it will consume 64 x $runtime cpu hoursperl$more_memoryEstimate the maximum time your job will need to run. We recommend testimg initially with a time less than 0.5hr test run because Jobs set for 0.5 h or less depedendably run immediately in the "debug" queue.
Once you are sure the configuration is correct, you then increase the time. The reason is that jobs > 0.5 h are submitted to the "normal" queue, where jobs configured for 1 or a few hours times may
run sooner than jobs configured for the full 168 hours.
outsuffixSet a name for output filesperl"-n $value"resultPlease enter a name for the output filesperl!defined $outsuffix1MLsearch_CATEnable ML searches under CAT (-F)perl!$bootstrap_seed && !$mulparambootstrap_seed && !$mlsearchperl($value)? " -F " : "" 0This option allows one to enable tree searches under CAT for veyr large trees, as this saves memory. This option can also be used under GAMMA models
to avoid thorough optimization of the best scoring ML tree at the end of the run.
more_memoryI have a data set that may require more than 12.5 GB of memoryperl$datatype eq "dna" || $datatype eq "protein"0To figure out if you need this option, use the RAxML memory calculator here: http://sco.h-its.org/exelixis/software.html.
Input the number of taxa, and patterns (or characters), and the gamma model(AA or DNA, as appropriate for your data). Multiply the value
you receive times 32. If that value is greater than 64 GB, then you should select this option. If you dont, the run will fail silently
at the end due to an out of memory error.
ncharEnter the number of patterns in your datasetperl$more_memoryPlease enter a value for the number of patterns in your data matrixperl!defined $ncharThe number of patterns in the matrix must 1 or greater.perl$nchar < 115
Knowing the number of characters in your dataset helps us determine the most efficient way to run raxml.
We need to know the number of characters per row in the input data matrix.
ntaxEnter the number of taxa in your datasetperl$more_memoryPlease enter a value for the number of taxa in your data matrixperl!defined $ntaxThe number of taxa in the matrix must 1 or greater.perl$nchar < 1Your job does not require the large memory option, please uncheck the large memory box and run normally.perl$more_memory && $datatype eq "dna" &&(($ntax - 2)*($nchar)*8*16) < 12 * (1024*1024*1024)Your job will probably not complete as configured, please contact us for help.perl$more_memory && $datatype eq "dna" && (($ntax-2)* ($nchar*8*16)) > 30*(1024*1024*1024) Your job does not require the large memory option, please uncheck the large memory box and run normally.perl$more_memory && $datatype eq "protein" && (($ntax-2) * ($nchar*8*80)) < 12*(1024*1024*1024)Your job will probably not complete as configured, please contact us for help.perl$more_memory && $datatype eq "protein" && (($ntax-2)* ($nchar*8*80)) > 30*(1024*1024*1024)15
Knowing the number of taxa and patterns in your dataset helps us determine the most efficient way to run raxml.
datatypePlease select the Data Typeproteindnarnabinarymultidna2outgroupOutgroup (one or more comma-separated outgroups, see comment for syntax)perl(defined $value)? " -o $value " : "" 10The correct syntax for the box is outgroup1,outgroup2,outgroupn. If white space is introduced (e.g. outgroup1, outgroup2, outgroupn) the program will fail with the message
"Error, you must specify a model of substitution with the '-m' option"
number_catsSpecify the number of distinct rate categories (-c)perl(defined $value)? " -c $value" : "" 252perl($datatype eq "dna" && $dna_gtrcat eq "GTRCAT") || ($datatype eq "protein" && $prot_sub_model eq "PROTCAT") || ($datatype eq "binary" && $bin_model eq "BINCAT")This option allows you to specify the number of distinct rate categories, into which the individually optimized rates for each individual site are thrown under -m GTRCAT. The default of -c 25 works fine in most practical cases.
disable_ratehetDisable Rate Heterogeneity (-V)perl($value)? " -V " : "" 02perl($datatype eq "dna" && $dna_gtrcat eq "GTRCAT") || ($datatype eq "protein" && $prot_sub_model eq "PROTCAT") || ($datatype eq "binary" && $bin_model eq "BINCAT")This option allows you to disable rate heterogeneity anong the sites. Valid for CAT model only.
treetopSupply a tree (Not available when doing rapid bootstrapping, -x) (-t)perl!$bootstrap_seedperl" -t tree.tre"2tree.treSpecifies a user starting tree file in Newick format. Not available when doing rapid bootstrapping. Branch lengths of that tree will be ignored. Note that you can also specify a non-comprehensive (not containing all taxa in the alignment) starting tree now. This might be useful if newly aligned/sequenced taxa have been added to your alignment. Initially, taxa will be added to the tree using the MP criterion. The comprehensive tree will then be optimized
under ML.provide_parsimony_seedSpecify a random seed value for parsimony inferences (-p)1perl!defined $treetop || $morpho_weight_calibrationPlease provide a parsimony seedperl$specify_runs && !defined $parsimony_seed_valPlease provide a parsimony seedperl$startingtreeonly && !defined $parsimony_seed_valSpecify a random number seed. The -p option allows you and others to reproduce your results (reproducible/verifiable experiments) and will help Alexis debug the program. Do not use this option if you want to generate multiple different starting trees.parsimony_seed_valEnter a random seed value for parsimony inferences (gives reproducible results from random starting tree)perl($value) ? " -p $value" : ""123452perl$provide_parsimony_seedPlease enter a random seed for the -p option (eg 12345)perl$provide_parsimony_seed && !defined $parsimony_seed_valrearrangement_yesSpecify an initial rearrangement setting (-i)0number_rearrangeSpecify the distance from original pruning point (-i)perl(defined $value)? " -i $value" : "" 10perl$rearrangement_yesPlease specify the distance from original pruning point (default would be 10)perl$rearrangement_yes && !defined $number_rearrange2This option allows you to specify an initial rearrangement setting for the initial phase of the search algorithm. If you specify e.g. -i 10; the pruned subtrees will be inserted up to a distance of 10 nodes away from their original pruning point. If you dont specify -i; a "good" initial rearrangement setting will automatically be determined by RAxML.
constraintperl!defined $binary_backbone && !$startingtreeonly && !$use_bootstoppingConstraint (-g)constraint.treperldefined $value ? " -g constraint.tre" : ""2 This option allows you to specify an incomplete or comprehensive multifurcating constraint
tree for the RAxML search in NEWICK format. Initially, multifurcations are resolved
randomly. If the tree is incomplete (does not contain all taxa) the remaining taxa are added by
using the MP criterion. Once a comprehensive (containing all taxa) bifurcating tree
is computed, it is further optimized under ML respecting the given constraints. Important: If you
specify a non-comprehensive constraint, e.g., a constraint tree that does not contain all taxa,
RAxML will assume that any taxa that not found in the constraint topology
are unconstrained, i.e., these taxa can be placed in any part of the tree. As an example
consider an alignment with 10 taxa: Loach, Chicken, Human, Cow, Mouse, Whale, Seal, Carp,
Rat, Frog. If, for example you would like Loach, Chicken, Human, Cow to be monophyletic you
would specify the constraint tree as follows: ((Loach, Chicken, Human, Cow),(Mouse, Whale, Seal, Carp, Rat, Frog)); Moreover, if you would like Loach, Chicken, Human, Cow to be monophyletic and in
addition Human, Cow to be monophyletic within that clade you could specify: ((Loach, Chicken, (Human, Cow)),(Mouse, Whale, Seal, Carp, Rat, Frog)); If you specify an incomplete constraint: ((Loach, Chicken, Human, Cow),(Mouse, Whale, Seal, Carp)); the two groups Loach, Chicken, Human, Cow and Mouse, Whale, Seal, Carp will be
monophyletic, while Rat and Frog can end up anywhere in the tree. binary_backboneperl! defined $constraintBinary Backbone (-r)binary_backbone.treperl(defined $value) ? " -r binary_backbone.tre" : ""2This option allows you to pass a binary/bifurcating constraint/backbone tree in NEWICK format to RAxML. Note that using this option only makes sense if this tree contains fewer taxa than the input alignment. The remaining taxa will initially be added by using the MP criterion. Once a comprehensive tree with all taxa has been obtained it will be optimized under ML respecting the restrictions of the constraint tree.
partitionUse a mixed/partitioned model? (-q)perl" -q part.txt"2part.txtThis parameter allows you to upload a file that specifies the regions of your alignment for which an individual model of nucleotide substitution should be estimated. This will typically be used to infer trees for long (in terms of base pairs) multi-gene alignments. If DNA and protein mixed models are used together (for example) you should choose a model option based on the model of rate heterogeneity you want to use. If you specify either -m GTRCAT or PROTCAT, the CAT model will be used, if you specify -m GTRGAMMA or -m BINGAMMA, the GAMMA model will be used ....
For example, if -m GTRGAMMA is used, individual alpha-shape parameters, GTR-rates, and empirical base frequencies will be estimated and optimized for each partition. Since Raxml can now handles mixed Amino Acid and DNA alignments, you must specify the data type in the partition file, before the partition name. For DNA, this means you have to add DNA to each line in the partition. For AA data you must specify the transition matrices for each partition:
The AA substitution model must be the first entry in each line and must be separated by a comma from the gene name, just like the DNA token above. You can not assign different models of rate heterogeneity to different partitions, i.e. it will be either CAT, GAMMA, GAMMAI etc. for all partitions, as specified with -m. Finally, if you have a concatenated DNA and AA alignments, with DNA data at positions 1 - 500 and AA data at 501-1000 with the WAG model the partition file should look as follows:DNA, gene1 = 1-500WAG gene2 = 501-1000estimate_perpartbrlenEstimate individual per-partition branch lengths (-M)perldefined $partitionperl($value) ? " -M" : "" 0The -M option switches on estimation of individual per-partition branch lengths. Only has effect when used in combination with -q and an alignment partition file. Branch lengths for individual partitions will be printed to separate files. A weighted average of the branch lengths is also computed by using the respective partition lengths (number of columns per partition). Note that, this does not take into account the "gappyness" of partitions, but I am currently not sure how to solve this problem. By default RAxML will compute a joined branch length estimate.ascertainmentCorrect for Ascertainment bias (ASC_)perl!$invariableASC_2This is useful for binary/morphological datasets that only contain variable sites (the identical morphological features are usually not
included in the alignments, hence you need to correct for this, see, e.g., http://sysbio.oxfordjournals.org/content/50/6/913.short).For DNA data this option might be useful when
you analyze alignments of SNPs that also don't contain constant sites. Note that, for mathematical and numerical reasons you can
not apply an ascertainment bias correction to datasets or partitions that contain constantsites. In this case, RAxML will exit with an error.ascertainment_corrAscertainment bias correction type (--asc-corr)perl$ascertainmentperl"--asc-corr $value"lewisfelsensteinstamatakislewis40To use the Felsentein option, you must specify the number of invariable sites in a file using -qperl$ascertainment_corr eq "felsenstein" && !defined $partitionTo use the Stamatakis option, you must specify the number of invariable sites per state for each partition in a file using -qperl$ascertainment_corr eq "stamatakis" && !defined $partitionThis option allows to specify the type of ascertainment bias correction you wish to
use. There are three types available: Lewis: the standard correction by Paul Lewis, Felsenstein: a correction introduced by Joe Felsenstein
that allows to explicitely specify the number of invariable sites (if known) one wants to correct for. Stamatakis: a correction introduced by myself that
allows to explicitly specify the number of invariable sites for each character (if known) one wants to correct for. Flesenstein and Stamatkis corrections are
accompanied by an upload file specified by the -q option, even if only one partiion is present. For file formatting, please see the RaxML 8.1 or higher manual.invariableEstimate proportion of invariable sites (GTRGAMMA + I)IThe invariable option is not recommended by the developer of RAxML. Please see the manual for details.perl$invariable2This option is not recommended by the developer of RAxMLexclude_fileChoose an input file that excludes the range of positions specifed in this file (-E)perl" -E excl"2exclThis option is used to excludes specific positions in the matrix. For example, uploading a file
that contains the text: 100-200 300-400 will create a file that excludes all columns between positions
100 and 200 as well as all columns between positions 300 and 400. Note that the boundary numbers (positions 100, 200, 300,
and 400) will also be excluded. To exclude a single column write (100-100). This option does not
run an analysis but just prints an alignment file without the excluded columns. Save this file to your
data area, and then run the real analysis. If you use a mixed model, an appropriately adapted model file
will also be written. The ntax element of the phylip files is automatically corrected Example: raxmlHPC -E excl
-s infile -m GTRCAT -q part -n TEST. In this case the files with columns excluded will be named
infile.excl and part.excl. set_weightsWeight characters as specifed in this file (-a)perl" -a weights"2weightsThis option alows you to specify a column weight file name to assign individual weights to each
column of the alignment. Those weights must be integers separated by any type and number of whitespaces
within a separate file. There must, of course, be as many weights as there are columns in your
alignment. The contents of an example weight file could look like this:
5 1 1 2 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 4 1 1 disable_seqcheckDisable checking for sequences with no values (-O)perl($value) ? "-O" : ""0Please use the -O with caution. It disables the check to see if sequences are completely devoid of information. See the RAxML manual for guidanceperl$disable_seqcheck54mesquite_outputPrint output files that can be parsed by Mesquite. (-mesquite)perl($value) ? "--mesquite" : ""054freetext_stringAdd an arbitrary command line stringperl(defined $value) ? "$value" : ""54nucleic_optsNucleic Acid Optionsdna_gtrcatChoose model for bootstrapping phaseperl$datatype eq "dna" || $datatype eq "rna"GTRCATGTRGAMMAperl"-m $ascertainment$value$invariable"GTRCAT2Please choose a DNA modelperl($datatype eq "dna" || $datatype eq "rna") && $dna_gtrcat ne "GTRCAT" && $dna_gtrcat ne "GTRGAMMA"The meaning of the model name GTRGAMMA used by RAxML 7.2.0 is exactly opposite that
used in RAxML 7.0.4, so we have eliminated selection by model name. Instead we use a
description of the model analysis. This selection gives GTR + Optimization of substitution
rates + Optimization of site-specific evolutionary rates which are categorized into "numberOfCategories" distinct
rate categories for greater computational efficiency. Final tree is evaluated under GTRGAMMA.
GTRMIX and GTRCAT_GAMMA have been eliminated as options. FLOAT options that are native in RAxML 7.2.3 are currently not supported here.
The meaning of the model names used by RAxML 7.2.0 are exactly opposite to those used in RAxML 7.0.4,
so we have eliminated selection by model name. Instead we use a description of the model analysis.
This option gives GTR + Optimization of substitution rates + GAMMA model of rate heterogeneity
(alpha parameter will be estimated) for bootstrap AND final evaluation. An analysis run in this
way will take a good deal longer than the alternative option (what used to be called GTRGAMMA in RAxML v.7.0.4).
GTRMIX and GTRCAT_GAMMA have been eliminated as options. FLOAT options that are native in RAxML 7.2.3 are currently not supported here.
protein_optsProtein Analysis Optionsprot_sub_modelChoose GAMMA or CAT model:perl$datatype eq "protein"PROTGAMMAPROTCATperl"-m $ascertainment$value$invariable$prot_matrix_spec$use_emp_freqs"PROTCAT2Please choose a protein modelperl$datatype eq "protein" && $prot_sub_model ne "PROTGAMMA" && $prot_sub_model ne "PROTCAT" Sorry, the -f x option is valid only with GAMMA modelsperl$compute_ml_distances && $prot_sub_model ne "PROTGAMMA"prot_matrix_specProtein Substitution Matrixperl$datatype eq "protein"DAYHOFFDCMUTJTTMTREVWAGRTREVCPREVVTBLOSUM62MTMAMLGMTARTMTZOAPMBHIVBHIVWJTTDCMUTFLUDUMMYDUMMY2AUTOLG4MLG4XPROT_FILEGTR_UNLINKEDGTRDAYHOFFNote: FLOAT and invariable sites (I) options are not exposed here. If you require this option, please contact mmiller@sdsc.edu.-m PROTCATmatrixName: analyses using the specified AA matrix + Optimization of substitution rates + Optimization of site-specific evolutionary rates which are categorized into numberOfCategories distinct rate categories for greater computational efficiency. Final tree might be evaluated automatically under PROTGAMMAmatrixName[f], depending on the tree search option.
-m PROTGAMMAmatrixName[F] analyses use the specified AA matrix + Optimization of substitution rates + GAMMA model of rate heterogeneity (alpha parameter will be estimated)Available AA substitution models: DAYHOFF, DCMUT, JTT, MTREV, WAG, RTREV, CPREV, VT, BLOSUM62, MTMAM, LG, GTR. You can specify if you want to use empirical base frequencies. Please note that for mixed models you can in addition specify the per-gene AA model in the mixed model file (see manual for details). Also note that if you estimate AA GTR parameters on a partitioned dataset, they will be linked (estimated jointly) across all partitions to avoid over-parametrization.user_prot_matrixUpload a Custom Protein Substitution Matrixperl$datatype eq "protein"perl"-P Userproteinmatrix.txt"2Userproteinmatrix.txtSpecify a file containing a user-defined Protein substitution model. This file must contain 420 entries, the first 400 entires are the AA substitution rates (this matrix must be symmetric) and the last 20 entries are the empirical base frequenciesmulcustom_aa_matricesUse a Partition file that specifies AA Matricesperl$datatype eq "protein"Please choose a partition file specifying up to 5 partitionsperl$mulcustom_aa_matrices && !defined $partitionThis option can be used to specify multiple custom matrices via a partition file. The filenames must be specified as firstpartition, secondpartition, thirdpartition, fourthpartition, and fifthpartition, in order, user_prot_matrixq1Select the First Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matricesfirstpartitionThis option allows the user to upload a Protein subsitution matrixuser_prot_matrixq2Select the Second Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matrices && defined $user_prot_matrixq1secondpartitionThis option allows the user to upload a second Protein subsitution matrixuser_prot_matrixq3Select the Third Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matrices && defined $user_prot_matrixq2thirdpartitionThis option allows the user to upload a third Protein subsitution matrixuser_prot_matrixq4Select the Fourth Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matrices && defined $user_prot_matrixq3fourthpartitionThis option allows the user to upload a fourth Protein subsitution matrixuser_prot_matrixq5Select the Fifth Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matrices && defined $user_prot_matrixq4fifthpartitionThis option allows the user to upload a fifth Protein subsitution matrixuse_emp_freqsUse empirical frequencies?perl$datatype eq "protein"FSec_structure_optsRNA Secondary Structure Optionssec_str_fileperl$datatype eq "rna"Upload a Secondary Structure File (-S)sec_structure.txtperl(defined $value) ? " -S sec_structure.txt" : ""2This option allows you to provide a secondary structure file. The file can contain "." for alignment columns that do not form part of a stem and characters, while "(), [], and {}" are used to define stem regions and pseudoknots.rna_modelUse an RNA Secondary Structure Substitution Model (-A)perldefined $sec_str_fileS6AS6BS6CS6DS6ES7AS7BS7CS7DS7ES7FS16AS16BS16Aperl"-A $value"2Use this option to specify one of the 6, 7, or 16 state RNA secondary structure substitution models.The nomenclature is identical to that used in the program PHASE. For more information, see PHASE documentation: 6 state model nomenclature: http://www.cs.manchester.ac.uk/ai/Software/phase/manual/node101.html; 7 state model nomenclature http://www.cs.manchester.ac.uk/ai/Software/phase/manual/node107.html; 16 state model nomenclature http://www.cs.manchester.ac.uk/ai/Software/phase/manual/node114.htmlbin_optsBinary Matrix Optionsbin_modelBinary data model (-m)perl$datatype eq "binary"BINCATBINGAMMABINCATperl"-m $ascertainment$value$invariable"2Please choose a binary modelperl$datatype eq "binary" && $bin_model ne "BINCAT" && $bin_model ne "BINGAMMA" Sorry, the -f x option is valid only with GAMMA modelsperl$compute_ml_distances && $bin_model ne "BINGAMMA"Binary data is handled in RAXML 7.2.0. Binary CAT use optimization of site-specific evolutionary rates, which are categorized into numberOfCategories (option -c) distinct rate categories for greater computational efficiency. Final tree might be evaluatedautomatically under BINGAMMA, depending on the tree search option. Binary GAMMA uses the GAMMA model of rate heterogeneity (alpha parameter will be estimated). The option for invariable sites is not provided at this time. The program's author supports the use of Gamma models.multi_optsMultiple State Morphological Matrix Optionsmulti_modelMultiple State Data Model (-m)perl$datatype eq "multi"MULTICATMULTIGAMMAMULTICATperl"-m $ascertainment$value$invariable"2Please choose a Multi-State modelperl$datatype eq "multi" && $multi_model ne "MULTICAT" && $multi_model ne "MULTIGAMMA" Multi-state morphological data are handled in RAXML at V. 7.3.0 and above. Multi-state CAT uses optimization of site-specific evolutionary rates which are categorized
into numberOfCategories distinct rate categories for greater computational efficiency. Final tree might be evaluated automatically under MULTIGAMMA depending on the tree search option Mutli-state GAMMA uses the GAMMA model of rate heterogeneity (alpha parameter will be estimated). Invariable sites (I) options are not exposed here.
If you require this option, please contact mmiller@sdsc.edu.choose_multi_modelSelect a Multiple state data model (-K)perl$datatype eq "multi"ORDEREDMKGTRGTRperl"-K $value"2Please choose a Multi-State data modelperl$datatype eq "multi" && $choose_multi_model ne "ORDERED" && $choose_multi_model ne "MK" && $choose_multi_model ne "GTR" Multi-state morphological data are handled in RAXML 7.3.0 and above. Multi-state CAT uses optimization of site-specific evolutionary rates which are categorized
into numberOfCategories distinct rate categories for greater computational efficiency. Final tree might be evaluated automatically under MULTIGAMMA depending on the tree search option Mutli-state GAMMA uses the GAMMA model of rate heterogeneity (alpha parameter will be estimated). The program's author supports the use of Gamma models.set_analysisSelect the AnalysisstartingtreeonlyOnly compute a randomized parsimony starting tree (-y)perl ($value)?" -y":""0perl!$compute_mr && !$thorough_opt && !$ancestral_states && !$fast_tree && !$mulparambootstrap_seed &&!$bootstrap_seed && !$bipartitions && ! defined $constraint && !$log_likelihood && !$compute_ml_distances && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftree2If you want to only compute a randomized parsimony starting tree with RAxML and not execute an ML analysis of the tree specify -y. The program will exit after computation of the starting tree. This option can be useful if you want to assess the impact of randomized MP and Neighbor Joining starting trees on your search algorithm. They can also be used e.g. as starting trees for Derrick Zwickls GARLI program for ML inferences, which needs comparatively good starting trees to work well above approximately 500 taxa. specify_runsSpecify the number alternative runs on distinct starting trees? (-#/-N)perl!$compute_mr && !$thorough_opt && !$fast_tree && !$ancestral_states && !$bootstrap_seed && !$mulparambootstrap_seed && !$bipartitions && !$startingtreeonly && !$log_likelihood && !$classify_into_reftreeThis option specifies the number of alternative runs on distinct starting trees. For example, if -N 10 is specfied, RAxML
will compute 10 distinct ML trees starting from 10 distinct randomized maximum parsimony starting trees. altrun_numberEnter number of number alternative runsperl$specify_runsperl"-N $value"15Please specify how many runs you wish to execute (eg 10)perl$specify_runs && !defined $altrun_numberSorry, the value for alternative runs must 1000 or lessperl$altrun_number > 1000if -N 10 is specfied, RAxML will compute 10 distinct ML trees starting from 10 distinct randomized maximum parsimony starting trees.no_bfgsDon't use BFGS searching algorithm (--no-bfgs)0perl($value)? "--no-bfgs":""Sorry, you cant use automatic bootstopping with a constraint treeperl$use_bootstopping && defined $constraint BFGS is a more efficient optimization algorithm for optimizing
branch lengths and GTR parameters simultaneously. YUOu can disable it using this optionbipartitionsDraw bipartitions onto a single tree topology. (-f b)perl ($value)?" -f b ":""02perl!$compute_mr && !$thorough_opt && !$ancestral_states && !$fast_tree && !$mulparambootstrap_seed &&!$bootstrap_seed && !$startingtreeonly && !$log_likelihood && !$compute_ml_distances && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftreeTo use the -f b option you must specify a best tree with "-t" and file containing multiple trees with the "-z" optionperl!$bootstrap_seed && $bipartitions && ( !defined $bunchotops || !defined $treetop)When this is specified, RAxML draws the bipartitions using a bunch of topologies (typically boot-strapped trees) specified with -z onto a single tree topology specified by -t (typically the best-scoring ML tree). ancestral_statesCompute Marginal Ancestral States using a rooted reference tree. (-f A)perl ($value)?" -f A ":""02perl!$compute_mr && !$thorough_opt && !$bipartitions && !$fast_tree && !$mulparambootstrap_seed &&!$bootstrap_seed && !$startingtreeonly && !$log_likelihood && !$compute_ml_distances && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftreeTo use the -f A option you must specify a best tree with "-t"perl!$bootstrap_seed && $ancestral_states && !defined $treetopWhen this is specified, RAxML draws the bipartitions using a bunch of topologies (typically boot-strapped trees) specified with -z onto a single tree topology specified by -t (typically the best-scoring ML tree). log_likelihoodCompute a log likelihood test (-f h)perl ($value)?" -f h ":""02perl!$compute_mr && !$thorough_opt && !$ancestral_states && !$fast_tree && !$mulparambootstrap_seed && !$bootstrap_seed && !$startingtreeonly && !$bipartitions && !$compute_ml_distances && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftreeTo use the compute a log likelihood test option you must specify a best tree with "-t" and file containing multiple trees with the "-z" optionperl$log_likelihood && (!defined $bunchotops || !defined $treetop)Sorry, you cannot compute a log likelihood test with GTRCAT models, please use "GTRGAMMA for the bootstrapping phase and GTRGAMMA for the final tree"perl($datatype eq "dna" || $datatype eq "rna" ) && $log_likelihood && $dna_gtrcat eq "GTRCAT"Sorry, you cannot compute a log likelihood test with GTRCAT models, please select PROTGAMMA for the modelperl$datatype eq "protein" && $log_likelihood && $prot_sub_model eq "PROTCAT"Sorry, you cannot compute a log likelihood test with GTRCAT models, please select PROTGAMMA for the modelperl$datatype eq "protein" && $log_likelihood && $prot_sub_model eq "PROTCAT"Sorry, you cannot compute a log likelihood test with GTRCAT models, please select BINGAMMA for the modelperl$datatype eq "binary" && $log_likelihood && $bin_model eq "BINCAT"When this is specified, RAxML will compute a log likelihood test (SH-test [21]) between a best tree passed via -t and a bunch of other trees passed via -z. Example: raxmlHPC -f h -t ref -z trees -s alg -m GTRGAMMA -n TESTthorough_optDo A Final Opimization of ML Tree (-f T)0perl!$compute_mr && !$ancestral_states && !$bipartitions && !$fast_tree && !$mulparambootstrap_seed &&!$bootstrap_seed && !$startingtreeonly && !$log_likelihood && !$compute_ml_distances && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftree2perl($value)?" -f T ":""You must specify a tree (via the -t option above) to use the -f T optionperl$thorough_opt && !defined $treetopSorry, you cant use the -f T option with the high memory optionperl$more_memoryThe -f T option allows the user to do a more thorough tree search that uses the
less lazy, i.e. more exhaustive SPR moves, in a stand alone mode. This algorithm is typically executed in the very end of a search done by -f a.intermediate_treefilesWrite intermediate tree files to a file (-j)0perl!$compute_mr && !$ancestral_states && !$bipartitions && !$fast_tree && !$startingtreeonly && !$log_likelihood && !$compute_ml_distances && !$morpho_weight_calibration && !$classify_into_reftree2perl($value)?" -j ":""This will simply print out a couple of intermediate trees during the tree search and not the
final tree only. The intermediate trees are written to files called: RAxML_checkpoint.TEST.0, RAxML_checkpoint.TEST.1, etc.convergence_criterionUse ML search convergence criterion. (-D)0perl!$compute_mr && !$ancestral_states && !$bipartitions && !$startingtreeonly && !$log_likelihood && !$compute_ml_distances && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftree2perl($value)?" -D ":""-D option = ML search convergence criterion. This will break off ML searches if the
relative RobinsonFoulds distance between the trees obtained from two consecutive lazy SPR cycles
is smaller or equal to 1%. Usage recommended for very large datasets in terms of taxa. On trees
with more than 500 taxa this will yield execution time improvements of approximately 50% while yielding
only slightly worse trees.compute_mrCompute majority rule consensus tree (-J)perl($dna_gtrcat eq "GTRGAMMA" || $prot_sub_model eq "PROTGAMMA" || $bin_model eq "BINGAMMA" || $multi_model eq "MULTIGAMMA" ) && !$compute_ml_distances && !$thorough_opt && !$ancestral_states && !$fast_tree && !$mulparambootstrap_seed && !$bootstrap_seed && !$bipartitions && !$startingtreeonly && !$log_likelihood && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftree0This option allows the user to compute majority rule consensus tree or extended majority rule consensus tree from an uploaded file containing several trees (-z)specify_mrSpecify majority rule consensus tree (-J) technique perl$compute_mrperl"-J $value"MRMRESTRICTMR_DROPSTRICT_DROPMRPlease select a majority rule optionperl!$specify_mrYou must use a collection of trees as your input file for this option. The option lets you compute a majority rule consensus tree with "MR" or extended majority rule consensus tree with "J
MRE" or strict consensus tree with "J STRICT". Options "J STRICT_DROP" and "J MR_DROP" will execute an algorithm that identifies dropsets which contain rogue taxa as proposed by Pattengale et
al. in the paper "Uncovering hidden phylogenetic consensus".
bunchotopsFile with topologies for bipartitions or bootstopping (-z)perl" -z topologies_file.tre"2topologies_file.treperl($bipartitions || $log_likelihood) && !defined $apo_topsThe -z option is used in combination with the -f b,-f h,-f m,-f n options. The uploaded file should contain a number of trees in NEWICK format. The file should contain one tree per line without blank lines between trees. For example, you can directly read in a RAxML bootstrap result file.compute_ml_distancesCompute pair-wise ML distances (-f x; GAMMA models only)0perl!$compute_mr && !$thorough_opt && !$ancestral_states && !$fast_tree && !$mulparambootstrap_seed && !$bootstrap_seed && !$bipartitions && !$startingtreeonly && !$log_likelihood && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftreeperl ($value)?" -f x ":""Sorry, the -f x option is valid only with GAMMA modelsperl$compute_ml_distances && $dna_gtrcat ne "GTRGAMMA"Compute pair-wise ML distances, ML model parameters will be estimated on an MP starting tree or a user-defined tree passed via "-t".fast_treeRun very fast experimental tree search(-f E)0perl!$compute_mr && !$thorough_opt && !$ancestral_states && !$compute_ml_distances && !$mulparambootstrap_seed && !$bootstrap_seed && !$bipartitions && !$startingtreeonly && !$log_likelihood && !$specify_runs && !$morpho_weight_calibration && !$classify_into_reftreeperl ($value)?" -f E ":""Any constraint trees will be ignoredperl$fast_treeCompute pair-wise ML distances, ML model parameters will be estimated on an MP starting tree or a user-defined tree passed via "-t".morpho_weight_calibrationExecute morphological weight calibration using maximum likelihood (-f u)0perl($datatype eq "binary" || $datatype eq "multi")&&(!$classify_into_reftree && !$thorough_opt && !$ancestral_states && !$fast_tree && !$mulparambootstrap_seed && !$bootstrap_seed && !$bipartitions && !$startingtreeonly && !$log_likelihood) && !$compute_mr perl ($value)?" -f u ":""You must specify a starting tree (via the -t option above) to use the -f x optionperl$morpho_weight_calibration && !defined $treetopThis option will determine to which degree the sites of a morphological alignment are
congruent with a given molecular reference tree. As output it will generate a RAxML weight
file that reflects the degree of congruence and that can be subsequently read via the a
option to conduct a more informed evolutionary placement of fossils using the evolutionary
placement algorithm (f -v option). For more details, see the corresponding papers:
Evolutionary placement http://sysbio.oxfordjournals.org/content/60/3/291.short
Fossil calibration http://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2009-1.pdfclassify_into_reftreeClassify a bunch of environmental sequences into a reference tree using
thorough read insertions(-f v)0perl!$compute_mr && !$morpho_weight_calibration && !$thorough_opt && !$ancestral_states && !$fast_tree && !$mulparambootstrap_seed && !$bootstrap_seed && !$bipartitions && !$startingtreeonly && !$log_likelihood && !$specify_runsperl ($value)?" -f v ":""You must specify a starting tree (via the -t option above) to use the -f x optionperl$classify_into_reftree && !defined $treetopClassify a bunch of environmental sequences into a reference tree using thorough read insertions you will need to start RAxML with a noncomprehensive
reference tree and an alignment containing all sequences (reference + query) For details on the design and performance of this algorithm, see: http://sysbio.oxfordjournals.org/content/60/3/291.short.
RAxML will produce a couple of idiosyncratic output files for the placements, but also an output file according to the common file standard defined by Erick Matsen for his pplacer(see http://matsen.fhcrc.org/pplacer/) program that is similar to the EPA (Evolutionary
Placement Algorithm) and myself. The common file format is described in this paper here:
http://www.plosone.org/article/info %3Adoi%2F10.1371%2Fjournal.pone.0031009bootstrap_configConfigure Bootstrappingmulparambootstrap_seedConduct Multiparametric Bootstrapping? (-b)0perl!$compute_mr && !$thorough_opt && !$ancestral_states && !$fast_tree && !$bootstrap_seed && !$startingtreeonly && !$compute_ml_distances && !$bipartitions && !$log_likelihood && !$compute_mr && !$specify_runsThis option allows you to turn on non-parametric bootstrapping. To allow for reproducibility of runs in the sequential program, you have to specify a random number seed.
mulparambootstrap_seed_valEnter a random seed value for multi-parametric bootstrappingperl($value) ? " -b $value" : ""12345perl$mulparambootstrap_seed2Please enter a random seed for the -b option (eg 12345)perl$mulparambootstrap_seed && !defined $mulparambootstrap_seed_valThis random number is provided to assure that there is comparability between runs.bootstrap_seedConduct rapid bootstrapping? (-x)1perl!$compute_mr && !$thorough_opt && !$ancestral_states && !$fast_tree && !$mulparambootstrap_seed && !$startingtreeonly && !$compute_ml_distances && !$bipartitions && !$log_likelihood && !$compute_mr && !$specify_runsThis option offers a novel rapid Bootstrapping algorithm that is faster by at least one order of magnitude than all other current implementations (RAxML 2.2.3, GARLI, PHYML). The results obtained are qualitatively comparable to those obtained via the standard RAxML BS algorithm and, more importantly, the deviations in support values between the rapid and the standard RAxML BS algorithm are smaller than those induced by using a different search strategy, e.g. GARLI or PHYML. This rapid BS search can be combined with a rapid ML search on the original alignment and thus allows users to conduct a full ML analysis within one single program run.bootstrap_seed_valEnter a random seed value for rapid bootstrappingperl($value) ? " -x $value" : ""123452perl$bootstrap_seed && !$mulparambootstrap_seed && !$startingtreeonly && !$compute_ml_distancesPlease enter a random seed for the -x option (eg 12345)perl$bootstrap_seed && !defined $bootstrap_seed_valThis random number is provided to assure that there is comparability between runs.mlsearchConduct a rapid Bootstrap analysis and search for the best-scoring ML tree in one single program run. (-f a)perl ($value)?" -f a ":""12Conduct a Rapid Bootstrap analysis (-x) and search for the best-scoring ML tree in one single program run.
perl!$compute_mr && !$thorough_opt && !$ancestral_states && !$fast_tree && !$bipartitions && !$startingtreeonly && $bootstrap_seed && !$compute_ml_distancesprintbrlengthPrint branch lengths (-k)perl ($value)?" -k":""02 The -k option causes bootstrapped trees to be printed with branch lengths.
The bootstraps will require a bit longer to run under this option because model parameters will be optimized at
the end of each run under GAMMA or GAMMA+P-Invar respectively.
specify_bootstrapsSpecify an Explicit Number of Bootstraps1perl($bootstrap_seed || $mulparambootstrap_seed) && (!defined $use_bootstopping || !$use_bootstopping)bootstopBootstrap iterations (-#|-N)perl($bootstrap_seed || $mulparambootstrap_seed) && !$use_bootstopping && !$startingtreeonlyperl" -N $value"1002Please enter number of bootstrap reps desired (eg 100)perl$specify_bootstraps && !defined $bootstopSorry, the value of bootstraps cannot exceed 1,000perl$bootstop > 1000Specifies the number of alternative runs on distinct starting trees. If 10, RAxML computes 10 distinct ML trees starting from 10 distinct randomized maximum parsimony starting trees. In combination with the Random seed for rapid bootstrap (-x) invoke a rapid BS analysis.
use_bootstoppingLet RAxML halt bootstrapping automaticallyperl($bootstrap_seed || $mulparambootstrap_seed) && (!defined $specify_boostraps || !$specify_bootstraps)0Please select to "specify bootstraps explicitly" or "automatically halt bootstrapping"perl ($bootstrap_seed || $mulparambootstrap_seed) && (!$use_bootstopping && !$specify_bootstraps)Sorry, you can not use a constraint tree with automatic boot stoppingperl$use_bootstopping && defined $constraintThis option instructs Raxml to automatically halt bootstrapping when certain criteria are met, instead of specifying the number of bootstraps for an analysis. The exact criteria are specified/configured using subsequent entry fields.freq_bootstoppingStop Bootstrapping Automatically with Frequency Criterionperl$use_bootstopping && !$mr_bootstoppingperl($value) ? "-N autoFC":""0Please choose either majority rule or frequency criterionperl$use_bootstopping && ( !$mr_bootstopping && !$freq_bootstopping )If you want to use the bootstopping criteria specify "-# autoMR" or "-# autoMRE" or "-# autoMRE_IGN" for the majority-rule tree based criteria (see -I option) or "-# autoFC" for the frequency-based criterion. Bootstopping will only work in combination with "-x" or "-b"mr_bootstoppingStop Bootstrapping Automatically with Majority Rule Criterion (recommended)perl$use_bootstopping && !$freq_bootstopping 1Please choose either majority rule or frequency criterionperl$use_bootstopping && (!$mr_bootstopping && !$freq_bootstopping) If you want to use the bootstopping criteria specify "-# autoMR" or "-# autoMRE" or "-# autoMRE_IGN" for the majority-rule tree based criteria (see -I option) or "-# autoFC" for the frequency-based criterion. Bootstopping will only work in combination with "-x" or "-b"mrbootstopping_typeSelect Majority Rule Criterion: (autoMRE is recommended)perl$mr_bootstoppingperl"-N $value"autoMRautoMREautoMRE_IGNautoMREPlease choose a Majority Rule criterionperl$mr_bootstopping && !defined $mrbootstopping_typeuse_apobootstoppingUse a posteriori bootstrapping0perl!$use_bootstoppingSorry, you cannot use a posteriori bootstrapping with the -b or -x optionsperl$use_apobootstopping && ($bootstrap_seed || $mulparambootstrap_seed)This option is used when a bootstrap analysis is already completed. Upload an input file, a tree, and bootstrapped trees. You must upload a set of bootstrapped trees uploaded as a single file using the -z option. Once this selection is made, the user must select whether the bootstopping threshold is determined using frequency criteria or majority rule criteriaaposterior_bootstoppingSelect the criterion for a posteriori bootstopping analysisperl$use_apobootstoppingperl"-I $value"autoFCautoMRautoMREautoMRE_IGNIn order to use the a posteriori bootstrapping option, you must upload a set of bootstrapped trees belowperl!defined $apo_topsThis option allows the user to conduct a posteriori bootstopping analysis based on a set of bootstrapped trees. Use: autoFC for the frequency-based criterion, autoMR for the majority-rule consensus tree criterion, autoMRE for the extended majority-rule consensus tree criterion
and autoMRE_IGN for metrics similar to MRE, but include bipartitions under the threshold whether they are compatible or not. This emulates MRE but is faster to compute. For any of these options, you also need to upload a tree file containing several bootstrap replicates via "-z"apo_topsFile with topologies for a posteriori bootstopping (-z)perl" -z apotopologies_file.tre"2apotopologies_file.treperl$use_apobootstopping && !defined $bunchotopsall_outputfiles*