RAxML-HPC2 Workflow on XSEDE8.2.12Phylogenetic tree inference using maximum likelihood/rapid bootstrapping run on XSEDEAlexandros StamatakisStamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics. 2006 Nov 1;22(21):2688-90Phylogeny / Alignmenthttp://icwww.epfl.ch/~stamatak/index-Dateien/countManual7.0.0.phpraxmlhpc2_workflowthis_is_a_workflowscheduler.confperl
"workflow_type=simple\\n"
0raxmlhpc_hybridlogic1perl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && $nchar < 500000 && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9)perl"raxmlHPC-HYBRID_8.2.12_expanse"0raxmlhpc_hybridlogic2perl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && $nchar < 200000 && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9)perl"raxmlHPC-HYBRID_8.2.12_expanse"0raxmlhpc_hybridlogic3perl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && $nchar > 499999 && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9)perl"raxmlHPC-PTHREADS_8.2.12_expanse"0raxmlhpc_hybridlogic4perl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && $nchar > 199999 && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9)perl"raxmlHPC-PTHREADS_8.2.12_expanse"0raxmlhpc_fasttreesearch1hyb_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar < 10000perl
"jobtype=mpi\\n" .
"mpi_processes=10\\n" .
"threads_per_process=4\\n" .
"cpus-per-task=4\\n" .
"mem=77G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch2hyb_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 9999 && $nchar < 40000perl
"jobtype=mpi\\n" .
"mpi_processes=5\\n" .
"threads_per_process=25\\n" .
"cpus-per-task=25\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch3hyb_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 39999 && $nchar < 500000perl
"jobtype=mpi\\n" .
"mpi_processes=2\\n" .
"threads_per_process=64\\n" .
"cpus-per-task=64\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch4hyb_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein"&& $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 499999perl
"threads_per_process=128\\n" .
"cpus-per-task=128\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch1phyb_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar < 3000perl
"jobtype=mpi\\n" .
"mpi_processes=10\\n" .
"threads_per_process=4\\n" .
"cpus-per-task=4\\n" .
"mem=77G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch2phyb_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 2999 && $nchar < 12000perl
"jobtype=mpi\\n" .
"mpi_processes=10\\n" .
"threads_per_process=12\\n" .
"cpus-per-task=12\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch3phyb_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 11999 && $nchar < 30000perl
"jobtype=mpi\\n" .
"mpi_processes=5\\n" .
"threads_per_process=25\\n" .
"cpus-per-task=25\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch4phyb_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 29999 && $nchar < 200000perl
"jobtype=mpi\\n" .
"mpi_processes=2\\n" .
"threads_per_process=64\\n" .
"cpus-per-task=64\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch5phyb_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 199999perl
"threads_per_process=128\\n" .
"cpus-per-task=128\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearchperl$specify_workflow eq "FTS" || ($bootstrap_value < 10 && $choose_bootstop ne "bootstop" && $altrun_number < 10)perl"raxmlHPC-PTHREADS_8.2.12_expanse"0raxmlhpc_fasttreesearch1_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar < 4000perl
"threads_per_process=8\\n" .
"cpus-per-task=8\\n" .
"mem=15G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch2_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 3999 && $nchar < 16000perl
"threads_per_process=16\\n" .
"cpus-per-task=16\\n" .
"mem=31G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch3_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 15999 && $nchar < 60000perl
"threads_per_process=24\\n" .
"cpus-per-task=24\\n" .
"mem=46G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch4_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 59999 && $nchar < 300000perl
"threads_per_process=48\\n" .
"cpus-per-task=48\\n" .
"mem=92G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch5_schedulerscheduler.confperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 299999perl
"threads_per_process=128\\n" .
"cpus-per-task=128\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch1p_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar < 3000perl
"threads_per_process=12\\n" .
"cpus-per-task=12\\n" .
"mem=23G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch2p_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 2999 && $nchar < 4500perl
"threads_per_process=24\\n" .
"cpus-per-task=24\\n" .
"mem=46G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch3p_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 4499 && $nchar < 15000perl
"threads_per_process=32\\n" .
"cpus-per-task=32\\n" .
"mem=61G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch4p_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 14999 && $nchar < 100000perl
"threads_per_process=64\\n" .
"cpus-per-task=64\\n" .
"mem=120G\\n" .
"node_exclusive=0\\n" .
"nodes=1\\n"
0raxmlhpc_fasttreesearch5p_schedulerscheduler.confperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 99999perl
"threads_per_process=128\\n" .
"cpus-per-task=128\\n" .
"mem=243G\\n" .
"node_exclusive=1\\n" .
"nodes=1\\n"
0infileSequences File (relaxed phylip format) (-s)1infile.txtinfile_regularperl"-s infile.txt"1runtime1scheduler.confMaximum Hours to Run (click here for help setting this correctly)0.25Maximum Hours to Run must be less than 168perl$runtime > 168.0Maximum Hours to Run must be greater than 0.1perl$runtime < 0.1perl"runhours=$value\\n"The job will run on 40 processors as configured. If it runs for the entire configured time, it will consume 40 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar < 10000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 125 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 9999 && $nchar < 40000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 128 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 39999 && $nchar < 500000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 128 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 499999The job will run on 40 processors as configured. If it runs for the entire configured time, it will consume 40 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar < 3000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 120 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 2999 && $nchar < 12000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 125 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 11999 && $nchar < 30000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 128 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 29999 && $nchar < 200000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 128 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && $specify_workflow ne "FTS" && ($bootstrap_value > 9 || $choose_bootstop eq "bootstop" || $altrun_number > 9) && $nchar > 199999The job will run on 8 processors as configured. If it runs for the entire configured time, it will consume 8 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar < 4000The job will run on 16 processors as configured. If it runs for the entire configured time, it will consume 16 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 3999 && $nchar < 16000The job will run on 24 processors as configured. If it runs for the entire configured time, it will consume 24 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 15999 && $nchar < 60000The job will run on 48 processors as configured. If it runs for the entire configured time, it will consume 48 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 59999 && $nchar < 300000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 128 x $runtime cpu hoursperl$datatype ne "PROTEIN" && $datatype ne "protein" && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 299999The job will run on 12 processors as configured. If it runs for the entire configured time, it will consume 12 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar < 3000The job will run on 24 processors as configured. If it runs for the entire configured time, it will consume 24 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 2999 && $nchar < 4500The job will run on 32 processors as configured. If it runs for the entire configured time, it will consume 32 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 4499 && $nchar < 15000The job will run on 64 processors as configured. If it runs for the entire configured time, it will consume 64 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 14999 && $nchar < 100000The job will run on 128 processors as configured. If it runs for the entire configured time, it will consume 128 x $runtime cpu hoursperl($datatype eq "PROTEIN" || $datatype eq "protein") && (($specify_workflow eq "FTS") || ($bootstrap_value < 10 && $altrun_number < 10 && $choose_bootstop ne "bootstop")) && $nchar > 99999Estimate the maximum time your job will need to run. We recommend testimg initially with a time less than 0.5hr test run because Jobs set for 0.5 h or less depedendably run immediately in the "debug" queue.
Once you are sure the configuration is correct, you then increase the time. The reason is that jobs > 0.5 h are submitted to the "normal" queue, where jobs configured for 1 or a few hours times may
run sooner than jobs configured for the full 168 hours.
specify_workflowSelect your workflowFTSMLTBBOOTCONMLSFTSPlease specify a workflowperl!defined $specify_workflow1no_bfgsDon't use BFGS searching algorithm (--no-bfgs)perl$specify_workflow eq "MLTB" || $specify_workflow eq "MLS" || $specify_workflow eq "BOOTCON"010perl($value)? "--no-bfgs":"" BFGS is a more efficient optimization algorithm for optimizing branch lengths and GTR parameters simultaneously. You can disable it using this optionaltrun_numberSpecify the number alternative runs on distinct starting trees (-#/-N)perl$specify_workflow eq "MLS" || $specify_workflow eq "MLTB" 1015Please specify how many runs you wish to execute (must be > 1 )perl($specify_workflow eq "MLTB" ||$specify_workflow eq "MLS") && $altrun_number < 2Sorry, the value for alternative runs must 1000 or lessperl($specify_workflow eq "MLTB" ||$specify_workflow eq "MLS") && $altrun_number > 1000This option specifies the number of alternative runs on distinct starting trees. For example, if -N 10 is specfied, RAxML
will compute 10 distinct ML trees starting from 10 distinct randomized maximum parsimony starting trees. choose_bootstopSpecify bootstrap protocolperl$specify_workflow eq "MLTB" || $specify_workflow eq "BOOTCON" specifybootstopspecifyPlease select "Specify an explicit number of bootstraps" or "Let RaxML halt bootstrapping automatically"perl!defined $choose_bootstopSorry, you can not use a constraint tree with automatic boot stoppingperl$choose_bootstop eq "bootstop" && defined $constraintThis option instructs Raxml to automatically halt bootstrapping when certain criteria are met, instead of specifying the number of bootstraps for an analysis. The exact criteria are specified/configured using subsequent entry fields.bootstrap_valueBootstrap iterations (-N)perl$choose_bootstop eq "specify"perl" -N $value"1002Please enter number of bootstraps desired (-N) (eg 100)perl$choose_bootstop eq "specify" && !defined $bootstrap_valueSorry, the number of bootstraps must be greater than 1 (-N) perl$bootstrap_value < 2Sorry, the number of bootstraps cannot exceed 1,000 (-N) perl$bootstrap_value > 1000Specifies the number of Bootstraps.
bootstopping_typeSelect Bootstopping Criterion: (autoMRE is recommended)perl$choose_bootstop eq "bootstop"perl"-N $value"autoFCautoMRautoMREautoMRE_IGNautoMREPlease choose a bootstopping criterionperl$choose_bootstop eq "bootstop" && !defined $bootstopping_typeprintbrlengthPrint branch lengths (-k)perl ($value)?" -k":""02 The -k option causes bootstrapped trees to be printed with branch lengths.
The bootstraps will require a bit longer to run under this option because model parameters will be optimized at
the end of each run under GAMMA or GAMMA+P-Invar respectively.
fasttree_worklowFast Tree Search Workflowfasttreesearch_workflowperl$specify_workflow eq "FTS"perl"-f E $clcorrascertainment"4outsuffix_FTSSet a name for output files in the FTS workflowperl$specify_workflow eq "FTS"perl"-n $value.tre"infilePlease enter a name for Fast Tree Search output filesperl$specify_workflow eq "FTS" && !defined $outsuffix_FTS12fasttreesearch_workflow2Optimize model parameters and branch lengths (-f e) perl$specify_workflow eq "FTS"perl($value) ? "&& raxmlHPC-PTHREADS_8.2.12_expanse -f e -t RAxML_fastTree.$outsuffix_FTS.tre -n brL.$outsuffix_FTS.tre -s infile.txt -O -m $ascertainment$dna_gtrcat$prot_sub_model$bin_model$multi_model$invariable$prot_matrix_spec$use_emp_freq $clcorrascertainment2": ""045fasttreesearch_workflow3SH-like values (-f J)perl$specify_workflow eq "FTS"0fasttreesearch_optimizationperl$fasttreesearch_workflow3 && $fasttreesearch_workflow2perl"&& raxmlHPC-PTHREADS_8.2.12_expanse -f J -t RAxML_result.brL.$outsuffix_FTS.tre -p $parsimony_seed_val2 -n sh.$outsuffix_FTS.tre -s infile.txt -O -m $ascertainment$dna_gtrcat$prot_sub_model$bin_model$multi_model$invariable$prot_matrix_spec$use_emp_freq $clcorrascertainment3"060fasttreesearch_nooptimzationperl$fasttreesearch_workflow3 && !$fasttreesearch_workflow2perl"&& raxmlHPC-PTHREADS_8.2.12_expanse -f J -t RAxML_fastTree.$outsuffix_FTS.tre -p $parsimony_seed_val2 -n sh.$outsuffix_FTS.tre -s infile.txt -O -m $ascertainment$dna_gtrcat$prot_sub_model$bin_model$multi_model$invariable$prot_matrix_spec$use_emp_freq $clcorrascertainment3"060parsimony_seed_val2Enter a random seed value for parsimony inferences for the SH- like value stepperl$fasttreesearch_workflow31234560Please enter a random seed for the -p option SH- like value step of the Fast Tree Search workflow (eg 12345)perl$fasttreesearch_workflow3 && !defined $parsimony_seed_val2MLTB_workflowMaximum Likelihood / Thorough Bootstrap WorkflowMLTB_workflowperl$specify_workflow eq "MLTB"perl" -b $mulparambootstrap_seed_val $cloutgroup $clcorrascertainment "10mulparambootstrap_seed_valEnter a random seed value for multi-parametric bootstrappingperl$specify_workflow eq "MLTB"12345Please enter a random seed for the -b option (eg 12345)perl$mulparambootstrap_seed && !defined $mulparambootstrap_seed_valThis random number is provided to assure that there is comparability between runs.outsuffix_MLTB1Name for output files from the MLTB bootstrapping stepperl$specify_workflow eq "MLTB"perl"-n $value"testR13Please enter a name for output files from the MLTB bootstrapping stepperl$specify_workflow eq "MLTB" && !defined $outsuffix_MLTB1Sorry, the values for output file names cannot be the sameperl$outsuffix_MLTB1 eq $outsuffix_MLTB2Sorry, the values for output file names cannot be the sameperl$outsuffix_MLTB1 eq $outsuffix_MLTB3Sorry, the values for output file names cannot be the sameperl$outsuffix_MLTB2 eq $outsuffix_MLTB3MLTB_workflow2perl$specify_workflow eq "MLTB"perl"&& raxmlHPC-PTHREADS_8.2.12_expanse -f d $cloutgroup2 -m $ascertainment$dna_gtrcat$prot_sub_model$bin_model$multi_model$invariable$prot_matrix_spec$use_emp_freqs $clcorrascertainment2 -N $altrun_number -s infile.txt -n $outsuffix_MLTB2 -p $parsimony_seed_val_MLTB2 -O"30parsimony_seed_val_MLTB2Enter a random seed value for MLTB sampling step1234545perl$specify_workflow eq "MLTB"Please enter a random seed for the -p option (eg 12345)perl$specify_workflow eq "MLTB" && !defined $parsimony_seed_valoutsuffix_MLTB2Name for the output files in step 2 of the ML + thorough bootstrap workflowperl$specify_workflow eq "MLTB"testBPlease enter a name for the output files for ML + thorough bootstrap workflow step2perl$specify_workflow eq "MLTB" && !defined $outsuffix_MLTB245no_bfgs2mltbDon't use BFGS searching algorithm (--no-bfgs) && $no_bfgsperl$specify_workflow eq "MLTB" && $no_bfgs45perl"--no-bfgs" BFGS is a more efficient optimization algorithm for optimizing branch lengths and GTR parameters simultaneously. You can disable it using this optionoutsuffix_MLTB3Set a name for output files in step 3 of the ML Thorough Bootstrapping analysisperl$specify_workflow eq "MLTB"MLTB_outputPlease enter a name for the MLTB final output filesperl$specify_workflow eq "MLTB" && !defined $outsuffix_MLTB360MLTB_workflow3perl$specify_workflow eq "MLTB"perl"&& raxmlHPC-PTHREADS_8.2.12_expanse -f b -t RAxML_bestTree.$outsuffix_MLTB2 -z RAxML_bootstrap.$outsuffix_MLTB1 -m $ascertainment$dna_gtrcat$prot_sub_model$bin_model$multi_model$invariable$prot_matrix_spec$use_emp_freqs -s infile.txt $clcorrascertainment3 $cloutgroup3 -n $outsuffix_MLTB3 -O"60MLS_worklowMaximum Likelihood Search Workflowmlsearch_workflowperl$specify_workflow eq "MLS"perl"-f d -N $altrun_number $clcorrascertainment $no_bfgs"10outsuffix_MLSSet a name for output files in the MLS workflowperl$specify_workflow eq "MLS"perl"-n $value.tre"infilePlease enter a name for ML Search output filesperl$specify_workflow eq "MLS" && !defined $outsuffix_MLS12mlsearch_shlikeSH-like values (-f J)perl$specify_workflow eq "MLS"0mlsearch_combineCombine Resultsperl$specify_workflow eq "MLS"0mlsearch_workflow2perl$specify_workflow eq "MLS" && $mlsearch_shlikeperl"&& raxmlHPC-PTHREADS_8.2.12_expanse -f J -t RAxML_bestTree.$outsuffix_MLS.tre -p $parsimony_seed_val2 -n sh.$outsuffix_MLS.tre -s infile.txt -O -m $ascertainment$dna_gtrcat$prot_sub_model$bin_model$multi_model$invariable$prot_matrix_spec$use_emp_freq $clcorrascertainment2"045mlsearch_workflow3perl$specify_workflow eq "MLS" && $mlsearch_combineperl"&& cat RAxML_result.$outsuffix_MLS.tre* > combined_results.$outsuffix_MLS.tre"090BOOTCON_workflowRapid Bootstrap / Consensus Tree WorkflowBOOTCON_workflowperl$specify_workflow eq "BOOTCON"perl" -x $rapidbootstrap_seed_val $clcorrascertainment $no_bfgs" 12outsuffix_BOOTCONSet a name for output files from the Rapid Bootstrap Stepperl$specify_workflow eq "BOOTCON"perl"-n $value.tre"bootPlease enter a name for the output files from the Rapid Bootstrap Stepperl$specify_workflow eq "BOOTCON" && !defined $outsuffix_BOOTCON12rapidbootstrap_seed_valEnter a random seed value for multi-parametric bootstrappingperl$specify_workflow eq "BOOTCON"1212345Please enter a random seed for the -x option (eg 12345)perl$specify_workflow eq "BOOTCON" && !defined $rapidbootstrap_seed_valThis random number is provided to assure that there is comparability between runs.BOOTCON_workflow2perl$specify_workflow eq "BOOTCON"perl"&& raxmlHPC-PTHREADS_8.2.12_expanse -m $ascertainment$dna_gtrcat$prot_sub_model$bin_model$multi_model$invariable$prot_matrix_spec$use_emp_freqs $clcorrascertainment2 -n $outsuffix_BOOTCON2.tre -J MR -z RAxML_bootstrap.$outsuffix_BOOTCON.tre"44outsuffix_BOOTCON2Name for output files from the Consensus Tree Stepperl$specify_workflow eq "BOOTCON"con.trePlease enter a name for output files from the BOOTCON consensus tree stepperl$specify_workflow eq "BOOTCON" && !defined $outsuffix_BOOTCON2Sorry, the output file names cannot be the sameperl$outsuffix_BOOTCON2 eq $outsuffix_BOOTCON50ncharEnter the number of patterns in your datasetPlease enter a value for the number of patterns in your data matrixperl!defined $ncharThe number of patterns in the matrix must 1 or greater.perl$nchar < 115
Knowing the number of characters in your dataset helps us determine the most efficient way to run raxml.
The number of patterns is the number of unique columns in the multiple sequence alignment matrix. You can get this number from the output of the intermediate results once a job begins. Entering the number of characters per taxon in your matirx, or 1000 as the number of patterns is an ok start.
Look at the intermediate results, and see if that is reasonably close. If it is not, kill the job, and adjust the number.
datatypePlease select the Data TypePROTEINDNArnaBINARYMULTIproteindnabinarymultiDNA2outgroupOutgroup (one or more comma-separated outgroups, see comment for syntax)The correct syntax for the box is outgroup1,outgroup2,outgroupn. If white space is introduced (e.g. outgroup1, outgroup2, outgroupn) the program will fail with the message
"Error, you must specify a model of substitution with the '-m' option"
cloutgroupperl(defined $outgroup)? "-o $outgroup":"" 12cloutgroup2perl(defined $outgroup)? "-o $outgroup":"" 45cloutgroup3perl$specify_workflow eq "MLTB" || $specify_workflow eq "FTS"perl(defined $outgroup)? "-o $outgroup":"" 65number_catsSpecify the number of distinct rate categories (-c)perl(defined $value)? " -c $value" : "" 252perl(($datatype eq "DNA" || $datatype eq "dna") && $dna_gtrcat eq "GTRCAT") || (($datatype eq "PROTEIN" || $datatype eq "protein") && $prot_sub_model eq "PROTCAT") || (($datatype eq "BINARY" || $datatype eq "binary") && $bin_model eq "BINCAT")This option allows you to specify the number of distinct rate categories, into which the individually optimized rates for each individual site are thrown under -m GTRCAT. The default of -c 25 works fine in most practical cases.
treetopSupply a tree (Not available when doing rapid bootstrapping, -x) (-t)perl$specify_workflow ne "BOOTCON"perl" -t tree.tre"12tree.treSpecifies a user starting tree file in Newick format. Not available when doing rapid bootstrapping. Branch lengths of that tree will be ignored. Note that you can also specify a non-comprehensive (not containing all taxa in the alignment) starting tree now. This might be useful if newly aligned/sequenced taxa have been added to your alignment. Initially, taxa will be added to the tree using the MP criterion. The comprehensive tree will then be optimized
under ML.provide_parsimony_seedSpecify a random seed value for parsimony inferences (-p)1Please provide a parsimony seedperl$altrun_number > 1 && !defined $parsimony_seed_valPlease provide a parsimony seed for the first step of the Fast Tree search workflowperl$specify_workflow eq "FTS" && !defined $parsimony_seed_valSpecify a random number seed. The -p option allows you and others to reproduce your results (reproducible/verifiable experiments) and will help Alexis debug the program. Do not use this option if you want to generate multiple different starting trees.parsimony_seed_valEnter a random seed value for parsimony inferences (gives reproducible results from random starting tree)perl($value) ? " -p $value" : ""123452perl$provide_parsimony_seedPlease enter a random seed for the -p option (eg 12345)perl$provide_parsimony_seed && !defined $parsimony_seed_valconstraintperl!defined $binary_backbone && !$use_bootstoppingConstraint (-g)constraint.treperldefined $value ? " -g constraint.tre" : ""2 This option allows you to specify an incomplete or comprehensive multifurcating constraint
tree for the RAxML search in NEWICK format. Initially, multifurcations are resolved
randomly. If the tree is incomplete (does not contain all taxa) the remaining taxa are added by
using the MP criterion. Once a comprehensive (containing all taxa) bifurcating tree
is computed, it is further optimized under ML respecting the given constraints. Important: If you
specify a non-comprehensive constraint, e.g., a constraint tree that does not contain all taxa,
RAxML will assume that any taxa that not found in the constraint topology
are unconstrained, i.e., these taxa can be placed in any part of the tree. As an example
consider an alignment with 10 taxa: Loach, Chicken, Human, Cow, Mouse, Whale, Seal, Carp,
Rat, Frog. If, for example you would like Loach, Chicken, Human, Cow to be monophyletic you
would specify the constraint tree as follows: ((Loach, Chicken, Human, Cow),(Mouse, Whale, Seal, Carp, Rat, Frog)); Moreover, if you would like Loach, Chicken, Human, Cow to be monophyletic and in
addition Human, Cow to be monophyletic within that clade you could specify: ((Loach, Chicken, (Human, Cow)),(Mouse, Whale, Seal, Carp, Rat, Frog)); If you specify an incomplete constraint: ((Loach, Chicken, Human, Cow),(Mouse, Whale, Seal, Carp)); the two groups Loach, Chicken, Human, Cow and Mouse, Whale, Seal, Carp will be
monophyletic, while Rat and Frog can end up anywhere in the tree. disable_ratehetDisable Rate Heterogeneity (-V)perl($value)? " -V " : "" 02perl(($datatype eq "DNA" || $datatype eq "dna") && $dna_gtrcat eq "GTRCAT") || (($datatype eq "PROTEIN" || $datatype eq "protein") && $prot_sub_model eq "PROTCAT") || (($datatype eq "BINARY" || $datatype eq "binary") && $bin_model eq "BINCAT")This option allows you to disable rate heterogeneity anong the sites. Valid for CAT model only.
binary_backboneperl! defined $constraintBinary Backbone (-r)binary_backbone.treperl(defined $value) ? " -r binary_backbone.tre" : ""2This option allows you to pass a binary/bifurcating constraint/backbone tree in NEWICK format to RAxML. Note that using this option only makes sense if this tree contains fewer taxa than the input alignment. The remaining taxa will initially be added by using the MP criterion. Once a comprehensive tree with all taxa has been obtained it will be optimized under ML respecting the restrictions of the constraint tree.
partitionUse a mixed/partitioned model? (-q)perl" -q part"2partThis parameter allows you to upload a file that specifies the regions of your alignment for which an individual model of nucleotide substitution should be estimated. This will typically be used to infer trees for long (in terms of base pairs) multi-gene alignments. If DNA and protein mixed models are used together (for example) you should choose a model option based on the model of rate heterogeneity you want to use. If you specify either -m GTRCAT or PROTCAT, the CAT model will be used, if you specify -m GTRGAMMA or -m BINGAMMA, the GAMMA model will be used ....
For example, if -m GTRGAMMA is used, individual alpha-shape parameters, GTR-rates, and empirical base frequencies will be estimated and optimized for each partition. Since Raxml can now handles mixed Amino Acid and DNA alignments, you must specify the data type in the partition file, before the partition name. For DNA, this means you have to add DNA to each line in the partition. For AA data you must specify the transition matrices for each partition:
The AA substitution model must be the first entry in each line and must be separated by a comma from the gene name, just like the DNA token above. You can not assign different models of rate heterogeneity to different partitions, i.e. it will be either CAT, GAMMA, GAMMAI etc. for all partitions, as specified with -m. Finally, if you have a concatenated DNA and AA alignments, with DNA data at positions 1 - 500 and AA data at 501-1000 with the WAG model the partition file should look as follows:DNA, gene1 = 1-500WAG gene2 = 501-1000ascertainmentCorrect for Ascertinament bias (ASC_)perl!$invariableASC_This is useful for binary/morphological datasets that only contain variable sites (the identical morphological features are usually not
included in the alignments, hence you need to correct for this, see, e.g., http://sysbio.oxfordjournals.org/content/50/6/913.short).For DNA data this option might be useful when
you analyze alignments of SNPs that also don't contain constant sites. Note that, for mathematical and numerical reasons you can
not apply an ascertainment bias correction to datasets or partitions that contain constantsites. In this case, RAxML will exit with an error.corrascertainmentAscertainment bias correction type (--asc-corr)perl$ascertainmentlewisfelsensteinstamatakislewisPlease specify the ascertainment correctionperl$ascertainment && !defined $corrascertainmentTo use the Felsenstein option, you must specify the number of invariable sites in a file using -qperl$corrascertainment eq "felsenstein" && !defined $partitionTo use the Stamatakis option, you must specify the number of invariable sites per state for each partition in a file using -qperl$corrascertainment eq "stamatakis" && !defined $partitionThis option allows to specify the type of ascertainment bias correction you wish to
use. There are three types available: Lewis: the standard correction by Paul Lewis, Felsenstein: a correction introduced by Joe Felsenstein
that allows to explicitely specify the number of invariable sites (if known) one wants to correct for. Stamatakis: a correction introduced by myself that
allows to explicitly specify the number of invariable sites for each character (if known) one wants to correct for. Flesenstein and Stamatkis corrections are
accompanied by an upload file specified by the -q option, even if only one partiion is present. For file formatting, please see the RaxML 8.1 or higher manual.clcorrascertainmentperl$corrascertainmentperl"--asc-corr $corrascertainment"15clcorrascertainment2perl$corrascertainment && ($fasttreesearch_workflow2 || $specify_workflow eq "MLTB" || $mlsearch_shlike || $specify_workflow eq "BOOTCON") perl"--asc-corr $corrascertainment"45clcorrascertainment3perl$corrascertainment && ($fasttreesearch_workflow3 || $specify_workflow eq "MLTB")perl"--asc-corr $corrascertainment"60invariableEstimate proportion of invariable sites (GTRGAMMA + I)IThe invariable option is not recommended by the developer of RAxML. Please see the manual for details.perl$invariable2This option is not recommended by the developer of RAxMLexclude_fileChoose an input file that excludes the range of positions specifed in this file (-E)perl" -E excl"2exclThis option is used to excludes specific positions in the matrix. For example, uploading a file
that contains the text: 100-200 300-400 will create a file that excludes all columns between positions
100 and 200 as well as all columns between positions 300 and 400. Note that the boundary numbers (positions 100, 200, 300,
and 400) will also be excluded. To exclude a single column write (100-100). This option does not
run an analysis but just prints an alignment file without the excluded columns. Save this file to your
data area, and then run the real analysis. If you use a mixed model, an appropriately adapted model file
will also be written. The ntax element of the phylip files is automatically corrected Example: raxmlHPC -E excl
-s infile -m GTRCAT -q part -n TEST. In this case the files with columns excluded will be named
infile.excl and part.excl. set_weightsWeight characters as specifed in this file (-a)perl" -a weights"2weightsThis option alows you to specify a column weight file name to assign individual weights to each
column of the alignment. Those weights must be integers separated by any type and number of whitespaces
within a separate file. There must, of course, be as many weights as there are columns in your
alignment. The contents of an example weight file could look like this:
5 1 1 2 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 4 1 1 disable_seqcheckDisable checking for sequences with no values (-O)perl($value) ? "-O" : ""0Please use the -O with caution. It disables the check to see if sequences are completely devoid of information. See the RAxML manual for guidanceperl$disable_seqcheck10nucleic_optsNucleic Acid Optionsdna_gtrcatChoose model for bootstrapping phaseperl($datatype eq "DNA" || $datatype eq "dna" || $datatype eq "rna")GTRCATGTRGAMMAperl"-m $ascertainment$dna_gtrcat$invariable"2Please choose a DNA modelperl($datatype eq "DNA" || $datatype eq "dna" || $datatype eq "rna") && $dna_gtrcat ne "GTRCAT" && $dna_gtrcat ne "GTRGAMMA"The meaning of the model name GTRGAMMA used by RAxML 7.2.0 is exactly opposite that
used in RAxML 7.0.4, so we have eliminated selection by model name. Instead we use a
description of the model analysis. This selection gives GTR + Optimization of substitution
rates + Optimization of site-specific evolutionary rates which are categorized into "numberOfCategories" distinct
rate categories for greater computational efficiency. Final tree is evaluated under GTRGAMMA.
GTRMIX and GTRCAT_GAMMA have been eliminated as options. FLOAT options that are native in RAxML 7.2.3 are currently not supported here.
The meaning of the model names used by RAxML 7.2.0 are exactly opposite to those used in RAxML 7.0.4,
so we have eliminated selection by model name. Instead we use a description of the model analysis.
This option gives GTR + Optimization of substitution rates + GAMMA model of rate heterogeneity
(alpha parameter will be estimated) for bootstrap AND final evaluation. An analysis run in this
way will take a good deal longer than the alternative option (what used to be called GTRGAMMA in RAxML v.7.0.4).
GTRMIX and GTRCAT_GAMMA have been eliminated as options. FLOAT options that are native in RAxML 7.2.3 are currently not supported here.
protein_optsProtein Analysis Optionsprot_sub_modelChoose GAMMA or CAT model:perl($datatype eq "PROTEIN" || $datatype eq "protein")PROTGAMMAPROTCATperl"-m $ascertainment$prot_sub_model$invariable$prot_matrix_spec$use_emp_freqs"2Please choose a protein modelperl($datatype eq "PROTEIN" || $datatype eq "protein") && $prot_sub_model ne "PROTGAMMA" && $prot_sub_model ne "PROTCAT" prot_matrix_specProtein Substitution Matrixperl($datatype eq "PROTEIN" || $datatype eq "protein")DAYHOFFDCMUTJTTMTREVWAGRTREVCPREVVTBLOSUM62MTMAMLGMTARTMTZOAPMBHIVBHIVWJTTDCMUTFLUDUMMYDUMMY2AUTOLG4MLG4XPROT_FILEGTR_UNLINKEDGTRNote: FLOAT and invariable sites (I) options are not exposed here. If you require this option, please contact mmiller@sdsc.edu.-m PROTCATmatrixName: analyses using the specified AA matrix + Optimization of substitution rates + Optimization of site-specific evolutionary rates which are categorized into numberOfCategories distinct rate categories for greater computational efficiency. Final tree might be evaluated automatically under PROTGAMMAmatrixName[f], depending on the tree search option.
-m PROTGAMMAmatrixName[F] analyses use the specified AA matrix + Optimization of substitution rates + GAMMA model of rate heterogeneity (alpha parameter will be estimated)Available AA substitution models: DAYHOFF, DCMUT, JTT, MTREV, WAG, RTREV, CPREV, VT, BLOSUM62, MTMAM, LG, GTR. You can specify if you want to use empirical base frequencies. Please note that for mixed models you can in addition specify the per-gene AA model in the mixed model file (see manual for details). Also note that if you estimate AA GTR parameters on a partitioned dataset, they will be linked (estimated jointly) across all partitions to avoid over-parametrization.user_prot_matrixUpload a Custom Protein Substitution Matrixperl($datatype eq "PROTEIN" || $datatype eq "protein")perl"-P Userproteinmatrix.txt"2Userproteinmatrix.txtSpecify a file containing a user-defined Protein substitution model. This file must contain 420 entries, the first 400 entires are the AA substitution rates (this matrix must be symmetric) and the last 20 entries are the empirical base frequenciesmulcustom_aa_matricesUse a Partition file that specifies AA Matricesperl($datatype eq "PROTEIN" || $datatype eq "protein")Please choose a partition file specifying up to 5 partitionsperl$mulcustom_aa_matrices && !defined $partitionThis option can be used to specify multiple custom matrices via a partition file. The filenames must be specified as firstpartition, secondpartition, thirdpartition, fourthpartition, and fifthpartition, in order, user_prot_matrixq1Select the First Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matricesfirstpartitionThis option allows the user to upload a Protein subsitution matrixuser_prot_matrixq2Select the Second Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matrices && defined $user_prot_matrixq1secondpartitionThis option allows the user to upload a second Protein subsitution matrixuser_prot_matrixq3Select the Third Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matrices && defined $user_prot_matrixq2thirdpartitionThis option allows the user to upload a third Protein subsitution matrixuser_prot_matrixq4Select the Fourth Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matrices && defined $user_prot_matrixq3fourthpartitionThis option allows the user to upload a fourth Protein subsitution matrixuser_prot_matrixq5Select the Fifth Protein Substitution Matrix Called in Your Partition Fileperl$mulcustom_aa_matrices && defined $user_prot_matrixq4fifthpartitionThis option allows the user to upload a fifth Protein subsitution matrixuse_emp_freqsUse empirical frequencies?perl($datatype eq "PROTEIN" || $datatype eq "protein")FSec_structure_optsRNA Secondary Structure Optionssec_str_fileperl$datatype eq "rna"Upload a Secondary Structure File (-S)sec_structure.txtperl(defined $value) ? " -S sec_structure.txt" : ""2This option allows you to provide a secondary structure file. The file can contain "." for alignment columns that do not form part of a stem and characters, while "(), [], and {}" are used to define stem regions and pseudoknots.rna_modelUse an RNA Secondary Structure Substitution Model (-A)perldefined $sec_str_fileS6AS6BS6CS6DS6ES7AS7BS7CS7DS7ES7FS16AS16BS16Aperl"-A $value"2Use this option to specify one of the 6, 7, or 16 state RNA secondary structure substitution models.The nomenclature is identical to that used in the program PHASE. For more information, see PHASE documentation: 6 state model nomenclature: http://www.cs.manchester.ac.uk/ai/Software/phase/manual/node101.html; 7 state model nomenclature http://www.cs.manchester.ac.uk/ai/Software/phase/manual/node107.html; 16 state model nomenclature http://www.cs.manchester.ac.uk/ai/Software/phase/manual/node114.htmlbin_optsBinary Matrix Optionsbin_modelBinary data model (-m)perl($datatype eq "BINARY" || $datatype eq "binary")BINCATBINGAMMAperl"-m $ascertainment$bin_model$invariable"2Please choose a binary modelperl$datatype eq "binary" && $bin_model ne "BINCAT" && $bin_model ne "BINGAMMA" Binary data is handled in RAXML 7.2.0. Binary CAT use optimization of site-specific evolutionary rates, which are categorized into numberOfCategories (option -c) distinct rate categories for greater computational efficiency. Final tree might be evaluatedautomatically under BINGAMMA, depending on the tree search option. Binary GAMMA uses the GAMMA model of rate heterogeneity (alpha parameter will be estimated). The option for invariable sites is not provided at this time. The program's author supports the use of Gamma models.multi_optsMultiple State Morphological Matrix Optionsmulti_modelMultiple State Data Model (-m)perl($datatype eq "MULTI" || $datatype eq "multi")MULTICATMULTIGAMMAperl"-m $ascertainment$value$invariable"2Please choose a Multi-State modelperl($datatype eq "MULTI" || $datatype eq "multi") && $multi_model ne "MULTICAT" && $multi_model ne "MULTIGAMMA" Multi-state morphological data are handled in RAXML at V. 7.3.0 and above. Multi-state CAT uses optimization of site-specific evolutionary rates which are categorized
into numberOfCategories distinct rate categories for greater computational efficiency. Final tree might be evaluated automatically under MULTIGAMMA depending on the tree search option Mutli-state GAMMA uses the GAMMA model of rate heterogeneity (alpha parameter will be estimated). Invariable sites (I) options are not exposed here.
If you require this option, please contact mmiller@sdsc.edu.choose_multi_modelSelect a Multiple state data model (-K)perl($datatype eq "MULTI" || $datatype eq "multi")ORDEREDMKGTRGTRperl"-K $value"2Please choose a Multi-State data modelperl($datatype eq "MULTI" || $datatype eq "multi") && $choose_multi_model ne "ORDERED" && $choose_multi_model ne "MK" && $choose_multi_model ne "GTR" Multi-state morphological data are handled in RAXML 7.3.0 and above. Multi-state CAT uses optimization of site-specific evolutionary rates which are categorized
into numberOfCategories distinct rate categories for greater computational efficiency. Final tree might be evaluated automatically under MULTIGAMMA depending on the tree search option Mutli-state GAMMA uses the GAMMA model of rate heterogeneity (alpha parameter will be estimated). The program's author supports the use of Gamma models.all_outputfiles*